
APPENDIX

A. Technical Implementation of Pos-to-Pos Non-Collision
Module

Due to differences in action space and limitations in the
precision of the retargeting algorithm, the configuration of a
dexterous robotic hand often generates invalid self-collision
configurations. These invalid configurations not only lack
operational utility but also risk system failure or hardware
damage. To address this issue, we propose a method for map-
ping invalid configurations to their closest valid counterparts,
enabling recovery from self-collision scenarios.

Fig. 8: Pipeline of the Non-collision Module

Fig. 8 illustrates our pos2pos implementation pipeline,
which consists of several interconnected components for
handling robot hand configurations.

1) Self-Collision Prediction Network (CPN): To facilitate
the transformation from invalid to valid configurations, we
first develop a Self-Collision Prediction Network (CPN).
The primary objective of CPN is to predict the likelihood of
self-collision for each link within a given joint configuration.

The training dataset is generated by uniformly sampling
n configurations from the robot’s action space. For each
sampled configuration, the system employs forward kinemat-
ics (FK) to compute the robot’s pose. A collision detection
algorithm (e.g., geometric or physics-based) then checks the
pose to derive m collision labels for the links. Each label
indicates whether a link is in a collision state.

The CPN takes joint configurations as input and outputs
collision probabilities for all joints. We train the network
using the binary cross-entropy (BCE) loss function, defined
as:

LCPN =
1

m

m∑

i=1

BCE(pi, ti), (5)

where pi and ti represent the predicted and true collision
probabilities, respectively.

2) Invalid Configuration Correction Network (CCN):
Building on the CPN, we introduce an Invalid Configura-
tion Correction Network (CCN) to map invalid configura-
tions to valid ones. The CCN takes an invalid configuration
as input and outputs a corrected configuration that minimizes
collision risks while closely resembling the original input.

The CCN training process minimizes a composite loss
function comprising two components:

• Mean Squared Error (MSE) Loss: Ensures the cor-
rected configuration closely resembles the original con-
figuration.

LMSE =
1

n

n∑

i=1

(q̂i → qi)
2
, (6)

where qi and q̂i denote the original and corrected joint
configurations, respectively.

• Collision Probability Loss: Leverages the CPN to
compute the mean collision probability of the corrected
configuration and aims to minimize this value.

LCollision =
1

m

m∑

i=1

pi(q̂), (7)

where pi(q̂) represents the collision probability of joint
i in the corrected configuration q̂.

We define the total loss function as:

L = ωLMSE + εLCollision, (8)

where ω and ε are hyperparameters balancing the two loss
components.

3) Explanation and Optimization Strategy: The loss terms
in the proposed framework serve distinct roles:

• LMSE ensures the corrected configuration retains conti-
nuity with the original input.

• LCollision minimizes the likelihood of self-collision in the
corrected configuration.

• The hyperparameters ω and ε significantly influence the
training outcomes, and we optimize their values through
grid search.

The CCN employs a fully connected multi-layer per-
ceptron (MLP) architecture. The input is the invalid joint
configuration q, and the output is the corrected configuration
q̂. We train the model using the Adam optimizer with a
learning rate ϑ and monitor convergence via the collision
rate on a validation dataset.

4) Summary: By integrating the CPN and CCN, we
efficiently transform invalid self-collision configurations into
valid ones. This approach ensures the validity and continuity
of robotic configurations, laying a robust foundation for
subsequent task execution.

B. Bill of Materials (BOM)
Our teleoperation system supports a modular architecture

with flexible input configurations. Not all devices shown
in Fig. 2 are required simultaneously. Instead, the system
requires one device from each of the two input groups on
the left side of the diagram:

• Wrist pose acquisition: RGB(-D) camera, IMU mocap
suit, or similar.

• Hand gesture acquisition: Mocap gloves, AR tracking,
or EMG-based sensing.

This design allows users to build their system using
available hardware, optimizing for cost, performance, or ease
of use. For example, while a VR headset can serve as a
unified sensor in both categories, it is not necessary. Our
system can be operated using a standard external monitor,
as done in our experiments.

Experimental Setup Used in This Paper: In our experi-
ments, we selected a configuration based on performance,
generalizability, and affordability:

• Mocap Gloves: $500
– Kickstarter Product Page

• IMU-Based Motion Capture Suit: $200
– Rebocap Product Page

• RGB-D Camera (Intel RealSense D435): $300
– Amazon Product Page

• Total Cost: Approximately $1000
Note: Since our method does not depend on depth data,

the RGB-D camera can be replaced by a lower-cost RGB
camera, further reducing the overall system cost.

Remarks on Reproducibility and Flexibility: The modular
nature of the TelePreview architecture allows for hardware
substitution based on availability or task requirements. We
provide this BOM to facilitate future replication efforts and
to emphasize that our system’s affordability claim refers
to the teleoperation input interface only, not the robot arm
or end-effector hardware.

C. Reproduction Experience of Baseline Methods
We tested several typical vision-based teleoperation meth-

ods under our experimental setup: OpenTeach, OpenTele-
vision, and AnyTeleop. For methods that did not support
LeapHand in the open-source code, we implemented the
corresponding parts ourselves to apply these methods.

OpenTeach: Following the guidelines in the open-source
repository for adding new hardware, we implemented the
retargeting module for LeapHand. However, we encountered
two significant issues. First, gesture recognition based on
visual input is highly sensitive to occlusions. When the back
of the hand is fully occluded or the side of the hand is
partially blocked, the positioning of the fingers can deviate
substantially—particularly with the Meta Quest3, which has
less accurate hand tracking compared to the Apple Vision
Pro. Second, the visual approach depends heavily on precise
hand calibration, requiring careful adjustment of parameters
to achieve acceptable retargeting results. Together, these two
factors led to instability in the accuracy of teleoperation in
some instances, ultimately impacting the success rate of task
completion.

OpenTelevision: The open-source code only provides the
necessary components for the 6-DoF Inspire Hand, with no
guidance on how to integrate new dexterous hands. Ad-
ditionally, many hand-specific hyperparameters lack proper

documentation. After attempting to integrate LeapHand using
the dex-retargetting code and redoing the joint mapping,
we were able to align the retargeting results with the
hand’s movements. However, due to LeapHand’s signifi-
cantly higher degrees of freedom, we encountered severe
self-collision issues. During deployment, motor collisions
occurred, rendering effective teleoperation impossible. Such
self-collision problems did not arise with the original Inspire
Hand, as its 6-DoF design inherently prevents the possibility
of self-collisions.

AnyTeleop: The retargeting code used here is also based
on dex-retargetting. For LeapHand, a high-DOF dexterous
hand with a mechanical design that has a higher likelihood
of self-collision, relying solely on fingertip-based inverse
kinematics (IK) resulted in frequent self-collisions. This
posed significant issues during teleoperation.

D. User Study in Subjective and Practice Time Evaluation

To complement the quantitative performance evaluation,
we conducted a user study measuring both subjective work-
load and practice time across different input conditions. Our
goal was to assess how the preview system impacts perceived
difficulty and actual learning effort.

1) Subjective Workload Ratings: We asked participants
to rate their experience using a 5-point Likert scale (higher
values indicate greater intensity) across five dimensions:
Mental Demand, Physical Demand, Total Demand, Frus-
tration Level, and Perceived Performance. Each participant
completed all tasks under both w/o Preview and w/ Preview
conditions.

As shown in Figure 9, the use of the preview system
significantly reduced user-reported workload across all cate-
gories. In particular, users reported substantially lower men-
tal and physical demand and improved overall performance
perception under the w/ Preview condition. This indicates
that the preview feature not only improves task success but
also reduces cognitive and physical strain.

Fig. 9: User-reported workload and performance across five
dimensions using in [43]. Ratings were collected using a 5-
point Likert scale.

2) Practice Time to Confidence: We also recorded the
time participants spent practicing each control modality until
they reported being comfortable with beginning formal task
trials. Three input conditions were compared: our proposed
method w/ Preview, the same setup w/o Preview, and a

https://www.kickstarter.com/projects/udexreal/udcap-silk-like-vr-gloves-for-steamvr
https://store.rebocap.site/products/rebocap-15-point-full-body-inertial-motion-capture
https://www.amazon.com/Intel-Realsense-D435-Webcam-FPS/dp/B07BLS5477

baseline vision-based method [3] commonly used in prior
work.

As shown in Figure 10, participants required the least
time to reach confidence using our full TelePreview setup.
The vision-based baseline took the longest and also showed
the largest variability across users. These results support
the claim that previewed, body-mapped teleoperation enables
faster and more intuitive learning.

Fig. 10: Practice time. New users reached task readiness
faster with our system (w/ Preview) than with other input
methods.

E. End-Effector Integration Details

(a) LEAP Hand (b) Gripper

Fig. 11: Deployment on Different Robots.

To demonstrate the generalizability of our system, we
deployed TelePreview on a Ufactory xArm robot equipped
with three different end-effectors(See in Fig. 11):

• LeapHand (multi-DoF anthropomorphic hand): Con-
trolled via direct mapping of 16 captured joint angles
from the mocap glove through our SMPL-X based
retargeting pipeline. The preview and execution follow
the full configuration space of the robot hand, enabling
rich dexterous behaviors.

• Parallel-jaw Gripper (single-DoF): We selected a
representative finger joint angle from the mocap glove
and used its value to control the gripper’s open/close
motion. This allowed the system to retain the preview
feature without the need for full-hand mapping.

• Vacuum Gripper (binary actuator): We applied a
threshold to the same glove joint signal to produce a
binary on/off activation, simulating “grasp” or “release”
behavior. This minimal control model was still compat-
ible with the preview system.

In all three configurations, only minor parameter adjust-
ments were required (e.g., kinematic model, end-effector
transform), and the core TelePreview architecture remained
unchanged. These results support our claim that the system
is hardware-agnostic and can be adapted to different robot
platforms with minimal integration effort.

End-Effector w/o Preview w/ Preview Improvement

LeapHand (16-DoF) 23.6± 4.7 13.6± 3.2 →10.0
Parallel-jaw Gripper (1-DoF) 16.8± 1.7 14.2± 1.4 →2.6
Vacuum Gripper (binary) 15.2± 1.9 13.7± 1.3 →1.5

TABLE III: Average execution time (in seconds) across
different end-effectors with and without the preview feature
in the Pick & Place task. TelePreview shows the most benefit
on the high-DoF LeapHand.

As shown in Table III, the preview system yields the
greatest execution time improvement with the LeapHand,
supporting our claim that TelePreview is most beneficial for
high-DoF, complex manipulation tasks.

F. User Evaluation Questionnaire
After completing the teleoperation tasks under each input

condition, participants were asked to rate their experience
across five categories using a 5-point Likert scale. Higher
scores indicate greater intensity unless otherwise specified.

Question Rating Scale (1–5)
How mentally demand-
ing was the task?

1 = Very Low, 5 = Very High

How physically
demanding was the
task?

1 = Very Low, 5 = Very High

How frustrated did you
feel while using the sys-
tem?

1 = Not at all, 5 = Extremely

How much overall effort
did the task require?

1 = Very Little, 5 = Very Much

How successful do you
feel you were in com-
pleting the tasks?

1 = Very Unsuccessful, 5 = Very
Successful

TABLE IV: Likert-scale questionnaire completed after each
input condition.
Mentally demanding: The degree of cognitive effort required
(e.g., concentration, decision-making).
Physically demanding: The amount of physical exertion
needed (e.g., hand or body movement, fatigue).
Frustration: The extent of annoyance, stress, or irritation
experienced.
Overall effort: The perceived total effort needed to perform
the task, combining physical and mental demands.

Participants answered this questionnaire once for each
input modality they used (e.g., w/ Preview, w/o Preview).

G. Visualization of our tasks
We visualize the execution process of our five manipula-

tion tasks in Figure 12-16. They demonstrate the execution
sequences of five manipulation tasks: picking and placing
a cup, hanging a spoon on a peg, pouring beans between
containers, rotating a box, and stacking cups.

(a) (b) (c) (d) (e)

Fig. 12: Pick&Place Visualization

(a) (b) (c) (d) (e)

Fig. 13: Hang Visualization

(a) (b) (c) (d) (e)

Fig. 14: Pour Visualization

(a) (b) (c) (d) (e)

Fig. 15: Box Rotation Visualization

(a) (b) (c) (d) (e)

Fig. 16: Cupstack Visualization

	Introduction
	Related Work
	Robot Teleoperation Frameworks for Dexterous Manipulation
	Visual Feedback in Teleoperation Systems

	System Overview
	Teleoperation Pipeline
	Wrist Pose Estimation
	SMPL-X Standard
	IMU-based Tracking System

	Hand Pose Estimation
	Non-Collision Retargeting Network

	Preview Pipeline
	Why Preview System Assistance?
	Technical Implementation of Preview System
	Spatial Alignment Using AprilTag
	Visual Preview Visualization
	IO Control for Preview Visualization

	Experiments
	Experiment Setup
	Task Descriptions
	Evaluation Metrics
	Performance Comparison with Baselines (Q1)
	Effect of Preview for Users (Q2)
	Deployment on Various Robots (Q3)

	Conclusion
	References
	Appendix
	Technical Implementation of Pos-to-Pos Non-Collision Module
	Self-Collision Prediction Network (CPN)
	Invalid Configuration Correction Network (CCN)
	Explanation and Optimization Strategy
	Summary

	Bill of Materials (BOM)
	Reproduction Experience of Baseline Methods
	User Study in Subjective and Practice Time Evaluation
	Subjective Workload Ratings
	Practice Time to Confidence

	End-Effector Integration Details
	User Evaluation Questionnaire
	Visualization of our tasks

